Resonance splitting in microring resonators constructed from organic nanofiber active waveguides

Author:

Takazawa Ken,Inoue Jun-ichi

Abstract

Abstract We investigated the resonance splitting in microring resonators (MRRs) constructed from nanofibers of organic dye, which function as active waveguides. The MRRs were fabricated by connecting both end parts of a nanofiber so that they contacted with each other in a side-by-side manner with a contact length of ∼5 μm by micromanipulation on a substrate. We observed that the shape and width of the resonance peaks were sensitively changed by changing the contact length. Moreover, the resonance peaks split into a doublet by tuning the contact length. We propose that the splitting is due to the coupling between the counterclockwise and clockwise traveling modes within a ring. The coupling can be induced by the reflection of traveling light at the end faces of the nanofiber in the connection region. Since this mechanism leads to a strong mode coupling, the resonance splitting is resolved even though the resonance peaks of the nanofiber MRRs are relatively broad (the Q-factors of up to ∼2000).

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3