Author:
Lin Keren,Nezu Atsushi,Akatsuka Hiroshi
Abstract
Abstract
An inverse model based on a low-pressure helium collisional-radiative (CR) model was developed. Parts of the rate coefficients were recalculated from the cross-sections. The dominant processes in the revised model were extracted to simplify the calculation and to develop an inverse model. The model can calculate the electron density and temperature of low-pressure helium plasma by inputting the population densities of levels
3
1
S
,
3
3
S
,
and
3
1
D
,
which can be measured by optical emission spectroscopy (OES) measurement in the visible wavelength range. The results demonstrate that the electron temperature obtained by the model is extremely close to the original value in the CR model. The output values of the electron density were of the same order and magnitude as the input values. The electron density and temperature measured by OES measurement in the experiment using the developed inverse model are consistent with the results measured by the probe method.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献