Robust adversarial learning model to segment non-speckle regions in blood flow echo

Author:

Mori Yuga,Omura MasaakiORCID,Suzuki Shota,Nagaoka RyoORCID,Gao ShangceORCID,Yagi Kunimasa,Hasegawa HideyukiORCID

Abstract

Abstract In our previous study, we analyzed the contrast of blood flow echo, and non-speckle regions were more frequently detected in the porcine blood with the high flow velocity. However, this contrast method is dependent on the degree of smoothing and threshold for outliers. This study developed a new U-Net model incorporating domain adaptation with both in silico and experimental data. This model segments blood flow echo into speckle and non-speckle regions. The performance of the developed U-Net model with several conditions of scatterer number density from 0.1 to 1.5 scatterers mm−3 and scatterer amplitude from 2 to 50 times against the speckle component was assessed using in silico data and experimental data with blood-mimicking fluid. The results indicated that the developed U-Net model with adversarial learning could stably detect non-speckle regions compared to the model without the adversarial learning and the contrast analysis method, in both in silico and experimental data.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3