Synthesis of MnSi1.7 nanosheet bundles from CaSi2 crystal powders using MnCl2 in molten salt

Author:

Komeda Fumio,Itoh Shogo,Shimura YosukeORCID,Takahashi Naohisa,Tatsuoka Hirokazu

Abstract

Abstract MnSi1.7 nanosheet bundles with an improved homogeneous composition were synthesized by annealing from CaSi2 crystal powders with MnCl2 in molten salt. The MnSi and Si phases were formed at the initial stage of the synthesis with an inhomogeneous Mn distribution within the nanosheet bundles. Subsequently, the phases were transformed into MnSi1.7 with an improved homogeneous Mn distribution within them for 10 h annealing in the molten salt. The formation of multiple Mn-silicide phases and remarkable improvement in the structural homogeneity of the MnSi1.7 nanosheet bundles were discussed in terms of the reactions of Mn or Si with chloride compounds, decomposition of chlorides at elevated temperatures, phase selection of multiple silicide phases, shrinkage of the volume from Si to MnSi1.7, and dominant diffusion species. Multiple growth variants of the MnSi1.7 domains were stacked in the nanosheets. For comparison, the growth in a deliquescent environment realized by NH4Cl addition was examined.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3