Simulation of control of heat flux with 2D traversable sonication path in high-intensity focused ultrasound treatment

Author:

Iwahashi Toshihide,Tang Tianhan,Matsui Kazuhiro,Fujiwara Keisuke,Itani Kazunori,Yoshinaka Kiyoshi,Azuma Takashi,Takagi Shu,Sakuma Ichiro

Abstract

Abstract High-intensity focused ultrasound causes thermal coagulation around the focal area in a minimally invasive manner. Multiple sonication is required to treat the target area due to the small size of the focal area. Consequently, the throughput is limited, and several sonication paths have been proposed to improve it. However, a systematic comparison of these paths is lacking. In this study, the effect of the moving focal area was analyzed using a moving heat source model. The effects of moving the heat source and the utilization of thermal accumulation were evaluated for the proposed sonication paths. Controlling multiple foci was effective because the heat flux was concentrated on energy that was focused in the unprocessed area without providing energy to previously processed areas. The multiple foci using thermal accumulation could reduce the treatment time and total input energy by 7.7% and 50%, respectively, compared to methods without thermal accumulation.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3