Abstract
Abstract
Thermoplastic elastomers (TPEs) may generate a residual strain after being stretched, which hinders their potential for use in high-performance materials. However, the mechanism of the residual strain formation has not been sufficiently elucidated thus far. Here, we used atomic force microscopy-based nanomechanical mapping to investigate a stretched TPE specimen consisting of poly(styrene-b-ethylene-co-butylene-b-styrene) with a content of 15 wt% styrene (SEBS-15). In the SEBS-15 polymer structure that maintained a strain of 0.5, hard-segmental (HS) amorphous domains aggregated by poly(styrene) segments deformed and became oriented parallel to the stretching direction, whereas soft-segmental rubbery domains aggregated by poly(ethylene-co-butylene) segments elongated, formed a stress network using the HS domains as junction points. Moreover, an in situ observation adopted for the stretched SEBS-15 revealed that HS domains therein underwent a relative displacement and partial separation that was influenced by the formed stress network, which was strongly related to the irreversible phenomena.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献