Non-wearable pulse rate measurement system using laser Doppler flowmetry with algorithm to eliminate body motion artifacts for masked palm civet (Parguma larvata) during husbandry training

Author:

Hiejima Takumi,Nogami Hirofumi,Saito Aya,Ban Kazuyuki,Bandara D. S. V.,Takigawa Ryo,Arata Jumpei

Abstract

Abstract Husbandry training (HT) shapes specific actions of animals to facilitate healthcare or animal research. The challenge of HT is that learning the specific actions requires zoo-keepers to grasp the stress states of animals. Here we suggest a non-wearable pulse rate measurement system to help zoo-keepers. The pulse rate indicates the stress state. By using laser Doppler flowmetry with an algorithm to eliminate body motion artifacts, it is possible to measure pulse rates. In the algorithm, the cutoff frequency is an important parameter. This paper reports the relationship between the cutoff frequency and the blood flow signal. We applied 100 Hz, 12 kHz and 15 kHz cutoff frequencies and compared blood flow signals. The results indicated that the appropriate cutoff frequency can vary depending on the magnitude of body motion artifacts. When there are few body motion artifacts, a low cutoff frequency is suitable. Otherwise, a high cutoff frequency is preferred.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research progress and clinical application of laser Doppler blood flow measurement technology;2024 International Conference on Optoelectronic Information and Optical Engineering (OIOE 2024);2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3