Scalable printing of two-dimensional single crystals of organic semiconductors towards high-end device applications

Author:

Kumagai ShoheiORCID,Makita Tatsuyuki,Watanabe ShunORCID,Takeya Jun

Abstract

Abstract The past several decades have witnessed a vast array of developments in printable organic semiconductors, where successes both in synthetic chemistry and in printing technology constituted a key step forward to the realization of printed electronics. In this Review, we highlight specifically materials science, charge transport, and device engineering of—two-dimensional single crystals—. Defect-free organic single-crystalline wafers manufactured via a one-shot printing process allow remarkably reliable implementations of organic thin-film transistors with decently high carrier mobility up to 10 cm2 V−1 s−1, which has revolutionized the current printing electronics to be able to meet looming internet of things challenges. This Review focuses on the perspective of printing two-dimensional single crystals with reasonable areal coverage, showing their promising applications for practical devices and future human society, particularly based on our recent contributions.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3