Author:
Henderson Leah,Goodman Noah D.,Tenenbaum Joshua B.,Woodward James F.
Abstract
Hierarchical Bayesian models (HBMs) provide an account of Bayesian inference in a hierarchically structured hypothesis space. Scientific theories are plausibly regarded as organized into hierarchies in many cases, with higher levels sometimes called ‘paradigms’ and lower levels encoding more specific or concrete hypotheses. Therefore, HBMs provide a useful model for scientific theory change, showing how higher-level theory change may be driven by the impact of evidence on lower levels. HBMs capture features described in the Kuhnian tradition, particularly the idea that higher-level theories guide learning at lower levels. In addition, they help resolve certain issues for Bayesians, such as scientific preference for simplicity and the problem of new theories.
Publisher
Cambridge University Press (CUP)
Subject
History and Philosophy of Science,Philosophy,History
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献