An Outbreak of Gram-Negative Bacteremia in Hemodialysis Patients Traced to Hemodialysis Machine Waste Drain Ports

Author:

Wang Susan A.,Levine Rachel B.,Carson Loretta A.,Arduino Matthew J.,Killar Teresa,Grillo F. Gregory,Pearson Michele L.,Jarvis William R.

Abstract

AbstractObjective:To investigate an outbreak of gram-negative bacteremias at a hemodialysis center (December 1, 1996-January 31, 1997).Design:Retrospective cohort study. Reviewed infection control practices and maintenance and disinfection procedures for the water system and dialysis machines. Performed cultures of the water and dialysis machines, including the waste-handling option (WHO), a drain port designed to dispose of saline used to flush the dialyzer before patient use. Compared isolates by pulsed-field gel electrophoresis.Setting:A hemodialysis center in Maryland.Results:94 patients received dialysis on 27 machines; 10 (11%) of the patients had gram-negative bacteremias. Pathogens causing these infections wereEnterobacter cloacae(n=6),Pseudomonas aeruginosa(n=4), andEscherichia coli(n=2); two patients had polymicrobial bacteremia. Factors associated with development of gram-negative bacteremias were receiving dialysis via a central venous catheter (CVC) rather than via an arterio-venous shunt (all 10 infected patients had CVCs compared to 31 of 84 uninfected patients, relative risk [RR] undefined;P<.001) or dialysis on any of three particular dialysis machines (7 of 10 infected patients were exposed to the three machines compared to 20 of 84 uninfected patients, RR=5.8;P=.005).E cloacae, P aeruginosa, or both organisms were grown from cultures obtained from several dialysis machines. WHO valves, which prevent backflow from the drain to dialysis bloodlines, were faulty in 8 (31%) of 26 machines, including 2 of 3 machines epidemiologically linked to case-patients. Pulsed-field gel electrophoresis patterns of available dialysis machine and patientE cloacaeisolates were identical.Conclusions:Our study suggests that WHO ports with incompetent valves and resultant backflow were a source of cross-contamination of dialysis bloodlines and patients' CVCs. Replacement of faulty WHO valves and enhanced disinfection of dialysis machines terminated the outbreak.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3