Abstract
As stochastic independence is essential to the mathematical development of probability theory, it seems that any foundational work on probability should be able to account for this property. Bayesian decision theory appears to be wanting in this respect. Savage’s postulates on preferences under uncertainty entail a subjective expected utility representation, and this asserts only the existence and uniqueness of a subjective probability measure, regardless of its properties. What is missing is a preference condition corresponding to stochastic independence. To fill this significant gap, the article axiomatizes Bayesian decision theory afresh and proves several representation theorems in this novel framework.
Publisher
Cambridge University Press (CUP)
Subject
History and Philosophy of Science,Philosophy,History
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献