Rapid Antibacterial Activity of 2 Novel Hand Soaps: Evaluation of the Risk of Development of Bacterial Resistance to the Antibacterial Agents

Author:

Geraldo Ingrid M.,Gilman Allan,Shintre Milind S.,Modak Shanta M.

Abstract

Objective.To evaluate the antimicrobial efficacy of and risk of organisms developing resistance to 2 novel hand soaps: (1) a soap containing triclosan, polyhexamethylene biguanide, and benzethonium chloride added to a soap base (TPB soap); and (2) a soap containing farnesol, polyhexamethylene biguanide, and benzethonium chloride added to a soap base (FPB soap). Tests also included soaps containing only triclosan.Design.The risk of emergence of resistant bacterial mutants was investigated by determining the susceptibility changes after repeated exposure of bacteria to the drugs and soaps in vitro. The effectiveness of the soaps was evaluated using an in vitro tube dilution method, a volunteer method (the ASTM standard), and 2 pig skin methods.Results.The minimum inhibitory concentration and minimum bactericidal concentration of triclosan against Staphylococcus, aureus increased 8- to 62.5-fold, whereas those of TPB and FPB (both alone and in soap) were unchanged. In vitro, TPB and FPB soaps produced higher log10 reductions in colony-forming units of all tested organisms (4.95-8.58) than did soaps containing triclosan alone (0.29-4.86). In the test using the pig skin and volunteer methods, TPB soap produced a higher log10 reduction in colony-forming units (3.1-3.3) than did the soap containing triclosan alone (2.6-2.8).Conclusion.The results indicate that TPB and FPB soaps may provide superior rapid and broad-spectrum efficacy with a lower risk of organisms developing resistance than do soaps containing triclosan alone. Pig skin methods may be used to predict the efficacy of antibacterial soaps in the rapid disinfection of contaminated hands. Hand washing with TPB and FPB soaps by healthcare workers and the general population may reduce the transmission of pathogens, with a lower risk of promoting the emergence of resistant organisms.

Publisher

Cambridge University Press (CUP)

Subject

Infectious Diseases,Microbiology (medical),Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3