"General analytical solution of fractional Klein–Gordon equation in a spherical domain"

Author:

FETECAU CONSTANTIN, ,VIERU DUMITRU, ,

Abstract

"Time-fractional Klein–Gordon equation in a sphere is considered for the case of central sym- metry under the time-variable Dirichlet condition. The time-fractional derivative with the power-law kernel is used. The Laplace transform and convenient transformations of the independent variable and unknown func- tion are used to determine the general analytical solution of the problem in the Laplace domain. In order to obtain the solution in the real domain, the inverse Laplace transforms of two functions of exponential type whose expressions are new in the literature have been determined. The similar solution for ordinary Klein– Gordon equation is a limiting case of general solution but a simpler form for this solution is provided. The convergence of general solution to the ordinary solution and the effects of fractional parameter on this solution are graphically underlined."

Publisher

Technical University of Cluj Napoca, North University Center of Baia Mare

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3