A note on the generators of the polynomial algebra of six variables and application

Author:

TIN NGUYEN KHAC,

Abstract

"Let $\mathcal P_{n}:=H^{*}((\mathbb{R}P^{\infty})^{n}) \cong \mathbb Z_2[x_{1},x_{2},\ldots,x_{n}]$ be the graded polynomial algebra over $\mathcal K,$ where $\mathcal K$ denotes the prime field of two elements. We investigate the Peterson hit problem for the polynomial algebra $\mathcal P_{n},$ viewed as a graded left module over the mod-$2$ Steenrod algebra, $\mathcal{A}.$ For $n>4,$ this problem is still unsolved, even in the case of $n=5$ with the help of computers. In this paper, we study the hit problem for the case $n=6$ in degree $d_{k}=6(2^{k} -1)+9.2^{k},$ with $k$ an arbitrary non-negative integer. By considering $\mathcal K$ as a trivial $\mathcal A$-module, then the hit problem is equivalent to the problem of finding a basis of $\mathcal K$-graded vector space $\mathcal K {\otimes}_{\mathcal{A}}\mathcal P_{n}.$ The main goal of the current paper is to explicitly determine an admissible monomial basis of the $\mathcal K$-graded vector space $\mathcal K{\otimes}_{\mathcal{A}}\mathcal P_6$ in some degrees. At the same time, the behavior of the sixth Singer algebraic transfer in degree $d_{k}=6(2^{k} -1)+9.2^{k}$ is also discussed at the end of this article. Here, the Singer algebraic transfer is a homomorphism from the homology of the mod-$2$ Steenrod algebra, $\mbox{Tor}^{\mathcal{A}}_{n, n+d}(\mathcal K, \mathcal K),$ to the subspace of $\mathcal K\otimes_{\mathcal{A}}\mathcal P_{n}$ consisting of all the $GL_n$-invariant classes of degree $d.$"

Publisher

Technical University of Cluj Napoca, North University Center of Baia Mare

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3