On a Steklov eigenvalue problem associated with the (p,q)-Laplacian

Author:

BARBU LUMINIŢA1,MOROŞANU GHEORGHE2

Affiliation:

1. OVIDIUS UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE, CONSTANŢA, ROMANIA

2. ACADEMY OF ROMANIAN SCIENTISTS, BUCHAREST, ROMANIA. BABEŞ-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, CLUJ-NAPOCA, ROMANIA

Abstract

"Consider in a bounded domain \Omega \subset \mathbb{R}^N, N\ge 2, with smooth boundary \partial \Omega, the following eigenvalue problem (1) \begin{eqnarray*} &~&\mathcal{A} u:=-\Delta_p u-\Delta_q u=\lambda a(x) \mid u\mid ^{r-2}u\ \ \mbox{ in} ~ \Omega, \nonumber \\ &~&\big(\mid \nabla u\mid ^{p-2}+\mid \nabla u\mid ^{q-2}\big)\frac{\partial u}{\partial\nu}=\lambda b(x) \mid u\mid ^ {r-2}u ~ \mbox{ on} ~ \partial \Omega, \nonumber \end{eqnarray*} where 1<r<q<p<\infty or 1<q<p<r<\infty; r\in \Big(1, \frac{p(N-1)}{N-p}\Big) if p<N and r\in (1, \infty) if p\ge N; a\in L^{\infty}(\Omega),~ b\in L^{\infty}(\partial\Omega) are given nonnegative functions satisfying \[ \int_\Omega a~dx+\int_{\partial\Omega} b~d\sigma >0. \] Under these assumptions we prove that the set of all eigenvalues of the above problem is the interval [0, \infty). Our result complements those previously obtained by Abreu, J. and Madeira, G., [Generalized eigenvalues of the (p, 2)-Laplacian under a parametric boundary condition, Proc. Edinburgh Math. Soc., 63 (2020), No. 1, 287–303], Barbu, L. and Moroşanu, G., [Full description of the eigenvalue set of the (p,q)-Laplacian with a Steklov-like boundary condition, J. Differential Equations, in press], Barbu, L. and Moroşanu, G., [Eigenvalues of the negative (p,q)– Laplacian under a Steklov-like boundary condition, Complex Var. Elliptic Equations, 64 (2019), No. 4, 685–700], Fărcăşeanu, M., Mihăilescu, M. and Stancu-Dumitru, D., [On the set of eigen-values of some PDEs with homogeneous Neumann boundary condition, Nonlinear Anal. Theory Methods Appl., 116 (2015), 19–25], Mihăilescu, M., [An eigenvalue problem possesing a continuous family of eigenvalues plus an isolated eigenvale, Commun. Pure Appl. Anal., 10 (2011), 701–708], Mihăilescu, M. and Moroşanu, G., [Eigenvalues of -\triangle_p-\triangle_q under Neumann boundary condition, Canadian Math. Bull., 59 (2016), No. 3, 606–616]."

Publisher

Technical University of Cluj Napoca, North University Center of Baia Mare

Subject

General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3