Author:
CHATZARAKIS G. E., ,INDRAJITH N.,PANETSOS S. L.,THANDAPANI E., , , ,
Abstract
"This paper introduces a new improved method for obtaining the oscillation of a second-order advanced difference equation of the form \begin{equation*} \Delta(\eta(n)\Delta\chi(n))+f(n)\chi(\sigma(n))=0 \end{equation*} where $\eta(n)>0,$ $\sum_{n=n_0}^{\infty}\frac{1}{\eta(n)}<\infty,$ $f(n)>0,$ $\sigma(n)\geq n+1,$ and $\{\sigma(n)\}$ is a monotonically increasing integer sequence. We derive new oscillation criteria by transforming the studied equation into the canonical form. The obtained results are original and improve on the existing criteria. Examples illustrating the main results are presented at the end of the paper."
Publisher
Technical University of Cluj Napoca, North University Center of Baia Mare
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献