Abstract
The model of adiabatic waveguide modes (AWMs) in a smoothly irregular integrated optical waveguide is studied. The model explicitly takes into account the dependence on the rapidly varying transverse coordinate and on the slowly varying horizontal coordinates. Equations are formulated for the strengths of the AWM fields in the approximations of zero and first order of smallness. The contributions of the first order of smallness introduce depolarization and complex values characteristic of leaky modes into the expressions of the AWM electromagnetic fields. A stable method is proposed for calculating the vertical distribution of the electromagnetic field of guided modes in regular multilayer waveguides, including those with a variable number of layers. A stable method for solving a nonlinear equation in partial derivatives of the first order (dispersion equation) for the thickness profile of a smoothly irregular integrated optical waveguide in models of adiabatic waveguide modes of zero and first orders of smallness is described. Stable regularized methods for calculating the AWM field strengths depending on vertical and horizontal coordinates are described. Within the framework of the listed matrix models, the same methods and algorithms for the approximate solution of problems arising in these models are used. Verification of approximate solutions of models of adiabatic waveguide modes of the first and zero orders is proposed; we compare them with the results obtained by other authors in the study of more crude models.
Publisher
Peoples' Friendship University of Russia
Subject
Industrial and Manufacturing Engineering,Environmental Engineering
Reference24 articles.
1. B. Z. Katsenelenbaum, Theory of irregular waveguides with slowly varying parameters [Teoriya neregulyarnyh volnovodov s medlenno menyayushchimisya parametrami]. Moscow: Akad. Nauk SSSR, 1961, in Russian.
2. V. V. Shevchenko, Continuous transitions in open waveguides [Plavnyye perekhody v otkrytykh volnovodakh]. Moscow: Nauka, 1969, in Russian.
3. Justification of the method of cross-sections for an acoustic waveguide with inhomogeneous filling
4. A. A. Egorov and L. A. Sevast’yanov, “Structure of modes of a smoothly irregular integrated optical four-layer three-dimensional waveguide”, Quantum Electronics, vol. 39, no. 6, pp. 566-574, 2009. DOI: 10.1070/ QE2009v039n06ABEH013966.
5. Simulation of guided modes (eigenmodes) and synthesis of a thin-film generalised waveguide Luneburg lens in the zero-order vector approximation