Constitutive tensor in the geometrized Maxwell theory

Author:

Korolkova Anna V.ORCID

Abstract

It is generally accepted that the main obstacle to the application of Riemannian geometrization of Maxwell’s equations is an insufficient number of parameters defining a geometrized medium. In the classical description of the equations of electrodynamics in the medium, a constitutive tensor with 20 components is used. With Riemannian geometrization, the constitutive tensor is constructed from a Riemannian metric tensor having 10 components. It is assumed that this discrepancy prevents the application of Riemannian geometrization of Maxwell’s equations. It is necessary to study the scope of applicability of the Riemannian geometrization of Maxwell’s equations. To determine whether the lack of components is really critical for the application of Riemannian geometrization. To determine the applicability of Riemannian geometrization, the most common variants of electromagnetic media are considered. The structure of the dielectric and magnetic permittivity is written out for them, the number of significant components for these tensors is determined. Practically all the considered types of electromagnetic media require less than ten parameters to describe the constitutive tensor. In the Riemannian geometrization of Maxwell’s equations, the requirement of a single impedance of the medium is critical. It is possible to circumvent this limitation by moving from the complete Maxwell’s equations to the approximation of geometric optics. The Riemannian geometrization of Maxwell’s equations is applicable to a wide variety of media types, but only for approximating geometric optics.

Publisher

Peoples' Friendship University of Russia

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

Reference18 articles.

1. Ueber die sogenannte Nicht-Euklidische Geometrie

2. A comparative review of recent researches in geometry

3. C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. San Francisco: W. H. Freeman, 1973.

4. I. Y. Tamm, “Crystal optics theory of relativity in connection with geometry biquadratic forms,” vol. 57, no. 3-4, pp. 209-240, 1925, in Russian.

5. I. Y. Tamm, “Electrodynamics of an anisotropic medium in a special theory of relativity,” Russian Journal of Physical and Chemical Society. Part physical, vol. 56, no. 2-3, pp. 248-262, 1924, in Russian.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3