Abstract
The article presents the implementation of one of the approaches to the integration of dynamical systems, which preserves algebraic integrals in the original fdm for Sage system. This approach, which goes back to the paper by del Buono and Mastroserio, makes it possible, based on any two explicit difference schemes, including any two explicit Runge-Kutta schemes, to construct a new numerical algorithm for integrating a dynamical system that preserves the given integral. This approach has been implemented and tested in the original fdm for Sage system. Details and implementation difficulties are discussed. For testing, two Runge-Kutta schemes were taken having the same order, but different Butcher tables, which does not complicate the method due to paralleling. Two examples are considered - a linear oscillator and a Jacobi oscillator with two quadratic integrals. The second example shows that the preservation of one integral of motion does not lead to the conservation of the other. Moreover, this method allows us to propose a practical application of the well-known ambiguity in the definition of Butcher tables.
Publisher
Peoples' Friendship University of Russia
Subject
Industrial and Manufacturing Engineering,Environmental Engineering
Reference16 articles.
1. A. Goriely, Integrability and Nonintegrability of Dynamical Systems. Singapore; River Edge, NJ: World Scientific, 2001.
2. Solving Ordinary Differential Equations I
3. V. V. Golubev, Vorlesungen über Differentialgleichungen im Komplexen. VEB Deutscher Verlag der Wissenschaften, 1958.
4. D. Greenspan. “Completely Conservative and Covariant Numerical Methodology for N-Body Problems With Distance-Dependent Potentials. Technical Report no. 285.” (1992), [Online]. Available: http://hdl.handle.net/10106/2267.
5. Completely conservative, covariant numerical methodology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献