Abstract
The calculation of quadratures arises in many physical and technical applications. The replacement of integration variables is proposed, which dramatically increases the accuracy of the formula of averages. For infinitely smooth integrand functions, the convergence law becomes super power. It is significantly faster than the power law and is close to exponential one. For integrals with bounded smoothness, power convergence is realized with the maximum achievable order of accuracy.
Publisher
Peoples' Friendship University of Russia
Subject
Industrial and Manufacturing Engineering,Environmental Engineering
Reference11 articles.
1. N. N. Kalitkin and E. A. Alshina, Numerical Methods. Vol. 1: Numerical Analysis [Chislennye Metody. T. 1: Chislennyi analiz]. Moscow: Akademiya, 2013, in Russian.
2. N. N. Kalitkin, A. B. Alshin, E. A. Alshina, and V. B. Rogov, Computations with Quasi-Uniform Grids [Vychisleniya na kvaziravnomernykh setkakh]. Moscow: Fizmatlit, 2005, in Russian.
3. The Exponentially Convergent Trapezoidal Rule
4. Quadrature formulas with exponential convergence and calculation of the Fermi–Dirac integrals
5. Computing the Fermi−Dirac Functions by Exponentially Convergent Quadratures