Abstract
The problematic of solving stiff boundary value problems permeates numerous scientific and engineering disciplines, demanding novel approaches to surpass the limitations of traditional numerical techniques. This research delves into the implementation of the solution continuation method with respect to the best exponential argument, to address these stiff problems characterized by rapidly evolving integral curves. The investigation was conducted by comparing the efficiency and stability of this novel method against the conventional shooting method, which has been a cornerstone in addressing such problems but struggles with the erratic growth of integral curves. The results indicate a marked elevation in computational efficiency when the problem is transformed using the exponential best argument. This method is particularly pronounced in scenarios where integral curves exhibit exponential growth speed. The main takeaway from this study is the instrumental role of the regularization parameter. Its judicious selection based on the unique attributes of the problem can dictate the efficiency of the solution. In summary, this research not only offers an innovative method to solve stiff boundary value problems but also underscores the nuances involved in method selection, potentially paving the way for further refinements and applications in diverse domains.
Publisher
Peoples' Friendship University of Russia
Reference11 articles.
1. E. Hairer and G. Wanner, Solving ordinary differential equations, II: stiff and differential-algebraic problems. Berlin: Springer-Verlag, 1996.
2. U. M. Ascher and L. R. Petzold, Computer methods for ordinary differential equations and differential-algebraic equations. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1998. DOI: 10. 1137/1.9781611971392.
3. K. Dekker and J. G. Verwer, Stability of Runge-Kutta methods for stiff nonlinear differential equations. North-Holland, Amsterdam, New York, Oxford, 1984.
4. V. I. Shalashilin and E. B. Kuznetsov, Parametric continuation and optimal parametrization in applied mathematics and mechanics. Dordrecht, Boston, London: Kluwer Academic Publishers, 2003.
5. Applying the Best Parameterization Method and Its Modifications for Numerical Solving of Some Classes of Singularly Perturbed Problems