A cognitive linguistic approach to analysis and correction of orthographic errors

Author:

Reynolds RobertORCID,Janda LauraORCID,Nesset ToreORCID

Abstract

In this paper, we apply usage-based linguistic analysis to systematize the inventory of orthographic errors observed in the writing of non-native users of Russian. The data comes from a longitudinal corpus (560K tokens) of non-native academic writing. Traditional spellcheckers mark errors and suggest corrections, but do not attempt to model why errors are made. Our approach makes it possible to recognize not only the errors themselves, but also the conceptual causes of these errors, which lie in misunderstandings of Russian phonotactics and morphophonology and the way they are represented by orthographic conventions. With this linguistically-based system in place, we can propose targeted grammar explanations that improve users’ command of Russian morphophonology rather than merely correcting errors. Based on errors attested in the non-native academic writing corpus, we introduce a taxonomy of errors, organized by pedagogical domains. Then, on the basis of this taxonomy, we create a set of mal-rules to expand an existing finite-state analyzer of Russian. The resulting morphological analyzer tags wordforms that fit our taxonomy with specific error tags. For each error tag, we also develop an accompanying grammar explanation to help users understand why and how to correct the diagnosed errors. Using our augmented analyzer, we build a webapp to allow users to type or paste a text and receive detailed feedback and correction on common Russian morphophonological and orthographic errors.

Publisher

Peoples' Friendship University of Russia

Subject

Linguistics and Language,Language and Linguistics

Reference23 articles.

1. Amaral, Luiz & Detmar Meurers.2011. On using intelligent computer-assisted language learning in real-life foreign language teaching and learning. ReCALL 23(1). 4-24.

2. Beesley, Kenneth R. & Lauri Karttunen. 2003. Finite State Morphology. Stanford, CA: CSLI Publications.

3. Biggs, John & Catherine Tang. 2011. Teaching for Quality Learning at University. Maidenhead, UK: Open University Press.

4. Biggs, John. 1999. What the student does: Teaching for enhanced learning. Higher Education & Development 18 (1). 57-75.

5. Bocharov, Victor, Svetlana Alexeeva, Dmitry Granovsky, E. Protopopova, Anastasia Bodrova, Svetlana Volskaya, I.V. Krylova & A.S. Chuchunkov. 2013. Crowdsourcing morphological annotations. In Computational Linguistics and Intellectual Technologies: Papers from the Annual International Conference "Dialog" 1. http://opencorpora.org/doc/articles/2013_Dialog.pdf (accessed 20.04.2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. EXPLORING THE COGNITIVE DIMENSIONS OF LANGUAGE ACQUISITION;Armenian Folia Anglistika;2024-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3