Consideration of damping in a continuous medium using the rod approximation by A.R. Rzhanitsyn

Author:

Zylev Vladimir B.ORCID,Platnov Pavel O.ORCID

Abstract

The work is focused on creating a method for accounting of internal friction, which provides frequency independence, considers the dependence of internal friction on the level of the stress state, and is suitable for physically nonlinear tasks at large and small displacements. The authors consider an approximated method of accounting the damping in plates using the rod approximation according to A.R. Rzhanitsyn. An analysis of the discrete Rzhanitsyn medium with a square cell is given in terms of isotropy of its damping properties. The exact fulfillment of the isotropic damping properties is shown for the eight specific directions in the orientation of the deformations. The solution for a test example is given, where a rod oscillating in tension is calculated according to two computational schemes. One of these schemes is a real rod, the other is a rectangular plate experiencing uniaxial tension, and for its dynamic modeling, in turn, the discrete model by A.R. Rzhanitsyn is applied. The use of the same damping parameters for the real rod and rods in the Rzhanitsyn approximation leads to close damping. An approximate approach has been developed to account for internal friction during vibrations of a two-dimensional continuous medium, as well as a variant of clarifying the damping forces in the plate. A numerical example of damping modeling is given in the case of considering geometrically and physically nonlinear oscillations.

Publisher

Peoples' Friendship University of Russia

Subject

General Materials Science

Reference20 articles.

1. Zylev V.B., Grigorev N.A. Generalized Prandtl model for the account of internal friction forces. Structural Mechanics and Analysis of Constructions. 2011;(11):58–62. (In Russ)

2. Zylev V.B., Platnov P.O. The use of fixed points in experimental research of the internal friction of material. Structural Mechanics of Engineering Constructions and Buildings. 2019;15(5):399–404. (In Russ) https://doi.org/10.22363/1815-5235-2019-15-5-399-404

3. Zylev V.B., Platnov P.O. Experimental research of the dependence of damping parameters on the initial plastic deformation, stress level and frequency. Fundamental, Exploratory and Applied Research of the RAASN on Scientific Support for the Development of Architecture, Urban Planning and Construction Industry of the Russian Federation in 2019 (vol. 2, p. 197–203). Moscow: ASV Publ.; 2020. (In Russ.)

4. Zylev V.B. Computational methods in nonlinear structural mechanics. Moscow: Engineer Publ.; 1999. (In Russ.)

5. Zylev V.B., Alferov I.V. Study of the dynamic support reactions in the two-span bridge farm under action of moving load. Construction and Reconstruction. 2019;(2):20–25. (In Russ.) https://doi.org/10.33979/2073-7416-2019-82-2-20-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3