Strengthening of reinforced concrete structures by composite materials taking into consideration the carbonization of concrete

Author:

Rimshin Vladimir I.ORCID,Truntov Pavel S.ORCID

Abstract

One of the main causes for deterioration of reinforced concrete structures in modern construction is corrosion of reinforcement. Corrosion leads to decrease of adhesion between reinforcement and concrete, formation of cracks and destruction of the protective layer of concrete. All this reduces the load-bearing capacity of reinforced concrete structures. The structures of sludge reservoirs exposed to carbon dioxide were used as an object of the study. The characteristic defects and damages revealed by visual inspection were described. The verification calculation of the considered construction depending on the pH of the medium was performed on the basis of the results of technical inspection and study. The degree of carbon dioxide impact on the considered structures was determined by the phenolphthalein test method, which is based on the color change of acid-base indicator solution on the surface of concrete and reinforced concrete depending on the pH value of its medium. The phenolphthalein test revealed that pH of the medium is less than 8 for the depth more than the thickness of the concrete protective layer. A verification calculation of the considered structure was performed on the basis of the technical inspection results and the conducted research. According to the calculation results, a variant of beam reconstruction and strengthening using external reinforcement based on carbon fibers FibARM 230/150 was proposed. The reconstruction was carried out with account of the carbonized concrete layer.

Publisher

Peoples' Friendship University of Russia

Subject

General Materials Science

Reference15 articles.

1. Rimshin V.I., Kurbatov V.L., Ketsko E.S., Truntov P.S. Extile industry building strengthening with external reinforcement with composite materials. Proceedings of Higher Education Institutions. Textile Industry Technology. 2021;(6):242-249. (In Russ.) https://doi.org/10.47367/0021-3497_2021_6_242

2. Subbotin A.I., Shutova M.N., Shagina A.I. Analysis of specifics of composite reinforcing use in the foundation of built and reconstructed buildings. Bulletin of the Volgograd State University of Architecture and Civil Engineering. 2019;(2):37-48. (In Russ.)

3. Merkulov S.I., Esipov S.M. The use of woven composites for recovery building construction. Proceedings of Higher Education Institutions. Textile Industry Technology. 2019;(3):256-259. (In Russ.)

4. Rimshin V.I., Varlamov A.A., Kurbatov V.L., Anpilov S.M. Development of the theory of concrete composite degradation. Stroitelnye Materialy. 2019;(6):12-17. (In Russ.) https://doi.org/10.31659/0585-430X-2019-771-6-12-17

5. Paranicheva N.V., Nazmeeva T.V. Reinforcement of building structures using carbon composite materials. Magazine of Civil Engineering. 2010;(2):19-22. (In Russ.)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3