Abstract
Shape optimization, as one of the types of structural optimization problems, is an important process in the design of shells, since it contributes to the creation of a structure with fine performance characteristics, expansion of design variations and knowledge base to obtain high-quality results. To solve the problems associated with determining the shape and creating more advanced structures, software packages include a special optimization module, which can be based on one or more mathematical methods, the purpose of which is to provide the best solution in the shortest possible time. The research is focused on the process of shape optimization in three well-known universal software packages: Ansys Mechanical, COMSOL Multiphysics and Simulia Abaqus, as well as in Rhinoceros modeling software with a special visual Grasshopper plugin. The purpose of the study is to analyze the technology of shape optimization in four software packages and to compare them with each other in terms of the problem-solving process, user interface, the fullness of libraries, accessibility for educational purposes and system requirements for a computer. The authors specify and describe the characteristic features of each software package. It was found that all the software packages under consideration are equipped with great opportunities for shape optimization of structures and have a variety of functionality for solving this type of tasks. The development of optimization technology in calculation and modeling software packages will allow obtaining the most effective solutions in the process of designing shells of complex shapes.
Publisher
Peoples' Friendship University of Russia
Subject
General Materials Science
Reference40 articles.
1. Allaire G., Dapogny C., Jouve F. Shape and topology optimization. In: Bonito A., Nochetto R.H. (eds.) Geometric Partial Differential Equations. Part II. Handbook of Numerical Analysis. 2021;(22):1-93.
2. Theodossiou N., Kougias I., Karakatsanis D. The history of optimization. Applications in water resources management. IWA Regional Symposium on Water, Wastewater and Environment: Traditions and Culture. Patras; 2014. p. 345-355.
3. Mykel J., Kochenderfer, Tim A. Wheeler algorithms for optimization. London: The MIT press; 2019.
4. Rao S.S. Engineering optimization: theory and practice. Hoboken, New Jersey: John Wiley & Sons; 2009.
5. Dede T., Kripka M., Togan V., Yepes V., Rao V.R. Usage of optimization techniques in civil engineering during the last two decades. Current Trends in Civil & Structural Engineering. 2019;2(1):1-17. https://doi.org/10.33552/CTCSE.2019.02.000529
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献