Abstract
Wooden rafter structures have undoubted advantages, which determine their wide application. The object of the study is triangular rafter structures. The purpose of the research is to find the dependence of force values in the elements of the studied structure on the magnitude of its lifting boom. The calculation of a triangular truss using the Maxwell - Cremona diagram is presented. The efficiency of the proposed method was estimated on the basis of a study of the structure of a wooden truss of the “scissors” type. The following pattern has been established: the change in the coordinates of the points (abscissas) of the force diagram is inversely proportional to the change in f . It is determined the area of rational values of the lift (roof slope) at which the values of internal forces tend to a minimum. It was revealed that the values of force increments in the truss elements at each step increase from 27% to 2 times when the roof slope de-creases. Based on the graphical analysis of the obtained data the range of effective values of the roof slope at which the forces in the elements of the truss take minimum values was found. Using a graphic method of determining the forces, it is possible to check variants of the roof slope in the search for a rational solution of the “scissor” type truss structure. It follows that the proposed method contributes to the choice of the most economical structural solutions.
Publisher
Peoples' Friendship University of Russia
Subject
General Materials Science
Reference20 articles.
1. Kromoser B., Braun M., Ortner M. Construction of all-wood trusses with plywood nodes and wooden pegs: a strategy towards resource-efficient timber construction. Applied Sciences. 2021;11(6):2568. https://doi.org/10.3390/app11062568
2. Roshchina S.I., Lukin M.V., Lukina A.V., Lisyatnikov M.S. Increased performance properties wood weakened biodeterioration by modifying the adhesive composition based on an epoxy resin. Scientific and Technical Volga Region Bulletin. 2014;(4):182-184. (In Russ.)
3. Sergeev M., Rimshin V., Lukin M., Zdralovic N. Multi-span composite beam. IOP Conference Series: Materials Science and Engineering. 2020;896:012058. https://doi.org/10.1088/1757-899X/896/1/012058
4. Ferretti F., Pozza L., Talledo D.A. Robustness analysis of historical timber roofs: a case study of the Gaggiandre shipyard at the Arsenale of Venice. Buildings. 2022;12(11):1773. https://doi.org/10.3390/buildings12111773
5. Lisitsky I.I., Zhadanov V.I., Rudnev I.V. Wooden trusses with nodal joints on glued flat rods. Industrial and Civil Engineering. 2020;(4):9-15. (In Russ.) https://doi.org/10.33622/0869-7019.2020.04.09-15
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献