Method of computational models of resistance for reinforced concrete

Author:

Kolchunov Vladimir I.ORCID

Abstract

Based on a comprehensive analysis of the experimental studies from the standpoint of their convergence with the theoretical solutions, the computational models of resistance (CMR) of reinforced concrete are proposed. These models include CMR1 - modeling of normal cracks, CMR2 - modeling of inclined cracks, CMR3 - modeling of diagonal cracks, CMR4 - modeling of intersecting cracks in the wall, CMR4* - modeling of cracks in a flat slab, and CMR5 - modeling of spatial cracks in torsion with bending, CMR5* - modeling of spatial cracks in bending with transverse force. Also, a hierarchy of computational models of the second and third levels is proposed. The distribution of intensity of working reinforcement along the cross-section of the calculated element was obtained in an analytical form by creating closed equations of blocks, corresponding to the blocks of the reinforced concrete element under the condition of equality to zero of partial derivatives of the Lagrange function to determine the maximum crack opening width. It is considered the effect proposed by the author on the additional deformation impact of the reaction “concrete - reinforcement” from the discontinuity of concrete during the formation of the crack by means of a special model of the two-cantilever element of fracture mechanics. Hypotheses about the distribution of linear and angular deformations during cross-section with account of gradients of deformations caused by formation of cracks were formulated for a complex-stressed element subjected to torsion with bending. Crack opening is defined as mutual displacements of reinforcement and concrete, taking into account deformation. The consolidation of substructures in the building system is performed by the method of initial parameters.

Publisher

Peoples' Friendship University of Russia

Subject

General Materials Science

Reference23 articles.

1. Travush V.I., Karpenko N.I., Kolchunov V.I., Kaprielov S.S., Demyanov A.I., Konorev A.V. The results of experimental studies of structures square and box sections in torsion with bending. Building and Reconstruction. 2018;(6):32-43. (In Russ.) Khaldoun R. Combined torsion and bending in reinforced and prestressed concrete beams using simpli ed method for combined stress-resultants. ACI Structural Journal. 2007;104(4):402-411.

2. Demyanov A.I., Salnikov A.S., Kolchunov Vl.I. Experimental studies of reinforced concrete structures during torsion with bending and analysis of their results. Building and Reconstruction. 2017;(4):17-26. (In Russ.) Available from: https://construction.elpub.ru/jour/article/view/46/46 (accessed: 25.02.2023). Thomas A., Hameed A.S. An experimental study on combined flexural and torsional behaviour of RC beams. International Research Journal of Engineering and Technology. 2017;4(5):1367-1370.

3. Kim C., Kim S., Kim K.-H., Shin D., Haroon M., Lee J.-Y. Torsional behavior of reinforced concrete beams with high-strength steel bars. Structural Journal. 2019;116:251-233.

4. Kandekar S.B., Talikoti R.S. Study of torsional behavior of reinforced concrete beams strengthened with aramid fiber strips. International Journal of Advanced Structural Engineering. 2018;10:465-474. http://doi.org/10.1007/s40091-018-0208-y

5. Křístek V., Průša J., Vítek J.L. Torsion of reinforced concrete structural members. Solid State Phenomena. 2018;272:178-184. http://doi.org/10.4028/www.scientific.net/SSP.272.178

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3