Numerical analysis of cylindrical shell stability interacting with inhomogeneous soil

Author:

Kosytsyn Sergey B.ORCID,Akulich Vladimir Yu.ORCID

Abstract

The research is aimed at determining the critical buckling load of the spatial model shell - soil system in the case of inhomogeneous physical and mechanical soil properties along the longitudinal axis of the cylindrical shell in a nonlinear formulations of the task. Methods. The task is solved by a numerical method using a finite element complex ANSYS. Two calculated cases of the spatial model shell - soil system are compiled. The soil is divided into two equal parts with different physical and mechanical properties. The problem was solved in geometrically, physically and constructively nonlinear statement. Nonlinearity is due to the need to find the contact zone through an iterative process and determine the time-varying position of the shell. The soil is modeled by volumetric elements, each consisting of twenty nodes. The shell is modeled by flat elements, each consisting of four nodes. Contact elements of one-side action are used. Critical buckling load are determined relative to the actual load of its own weight. Results. Critical loads are obtained from two calculated cases of the spatial model shell - soil system. There is a comparative analysis of the results. An assessment of the stability margin of the shell relative to the actual load is given.

Publisher

Peoples' Friendship University of Russia

Reference15 articles.

1. Lalin V.V., Dmitriev A.N., Diakov S.F. Nonlinear deformation and stability of geometrically exact elastic arches. Magazine of Civil Engineering. 2019;5(89):39–51. http://dx.doi.org/10.18720/MCE.89.4

2. Semenov A.A. Strength and stability of geometrically nonlinear orthotropic shell structures. Thin-Walled Structures. 2016;106:428–436. http://dx.doi.org/10.1016/j.tws.2016.05.018

3. Semenov A.A. Methodology research of stability of shallow orthotropic shells of double curvature under dynamic loading. International Journal for Computational Civil and Structural Engineering, 2017;13(2):145–153. http://dx.doi.org/10.22337/2587-9618-2017-13-2-145-153

4. Theory reference for the mechanical APDL and mechanical applications. ANSYS, Inc. 2009.

5. Timoshenko S.P. Theory of elastic stability. Moscow: Gostekhizdat Publ.; 1955. (In Russ.)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quadrilateral element in mixed FEM for analysis of thin shells of revolution;Structural Mechanics of Engineering Constructions and Buildings;2023-03-30

2. Volumetric element with vector approximation of the desired values for nonlinear calculation of the shell of rotation;Structural Mechanics of Engineering Constructions and Buildings;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3