Theoretical and experimental modeling of deformation of a cylindrical shell made of 45 steel under complex loading

Author:

Cheremnykh Stepan V.ORCID

Abstract

Thin-walled cylindrical shells are used in elements of highly loaded products of mechanical engineering and energy. Along with their frequent use in production, experimental research in laboratories is also carried out constantly. This allows to simulate the behavior of the shell when exposed to external forces. But sometimes conducting an experiment becomes little possible due to the limitation of the power of the experimental apparatus when modeling the corresponding conditions of exposure to the shell in practice, therefore, improving theoretical methods for calculating the limiting states of shells when working in the elastoplastic region is relevant. The purpose of the study is to verify the conformity of the results of the experiment conducted on a thin-walled cylindrical shell made of steel 45 (GOST 1050-2013) when exposed to the sample by stretching, compression and torsion forces with theoretical calculations based on the equations of the theory of elastic-plastic processes by A.A. Ilyushin. The equations of the defining relations of the theory of elastic-plastic processes by A.A. Ilyushin for arbitrary trajectories of complex loading and deformation of materials in the deviatory deformation space Э1-Э3 are presented. All theoretical results are checked for compliance with the experiment, the reliability of the existing theory of stability is assessed. The solution is presented in the form of graphs of the dependence of the vector and scalar properties of the material on the length of the arc of the deformation trajectory and other parameters. Numerical values are selectively presented for different loading stages.

Publisher

Peoples' Friendship University of Russia

Reference32 articles.

1. Gultyaev V.I., Alekseev A.A., Savrasov I.A., Subbotin S.L. Experimental verification of the isotropy postulate on orthogonal curved trajectories of constant curvature. Lecture Notes in Civil Engineering. 2021;151:315-321. http://doi.org/10.1007/978-3-030-72910-3_46

2. Zubchaninov V.G., Alekseev A.A., Alekseeva E.G., Gultiaev V.I. Experimental verification of postulate of isotropy and mathematical modeling of elastoplastic deformation processes following the complex angled nonanalytic trajectories. Materials Physics and Mechanics. 2017;32(3):298-304.

3. Bazhenov V.G., Osetrov S.L., Osetrov D.L. Analysis of stretching of elastoplastic samples and necking with edge effects. Journal of Applied Mechanics and Technical Physics. 2018;59(4):693-698. http://doi.org/10.1134/S0021894418040168

4. Gan Y., Su J., Zhong K., Zhang Q., Long R., Liang H., Zhang X. Dynamic responses of metal shell and fiber-reinforced composite shell subjected to internal blast loading. Binggong Xuebao. 2020;41(2):128-134. http://doi.org/10.3969/j.issn.1000-1093.2020.S2.017

5. Kilymis D., Gérard C., Pizzagalli L. Ductile deformation of core-shell Si-Sic nanoparticles controlled by shell thickness. Acta Materialia. 2019;164:560-567. http://doi.org/10.1016/j.actamat.2018.11.009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3