Spectral Analysis of One-Dimensional Dirac System with Summable Potential and Sturm- Liouville Operator with Distribution Coefficients

Author:

Savchuk A. M.,Sadovnichaya I. V

Abstract

We consider one-dimensional Dirac operatorLP,U with Birkhoff regular boundary conditions and summable potential P(x) on[0, ]. We introduce strongly and weakly regular operators. In both cases, asymptotic formulas for eigenvalues are found. In these formulas, we obtain main asymptotic terms and estimates for the second term. We specify these estimates depending on the functional class of the potential: Lp[0,] with p [1,2] and the Besov space Bp,p'[0,] with p [1,2] and (0,1/p). Additionally, we prove that our estimates are uniform on balls Pp,R Then we get asymptotic formulas for normalized eigenfunctions in the strongly regular case with the same residue estimates in uniform metric on x [0,]. In the weakly regular case, the eigenvalues 2n and 2n+1 are asymptotically close and we obtain similar estimates for two-dimensional Riesz projectors. Next, we prove the Riesz basis property in the space (L2[0,])2 for a system of eigenfunctions and associated functions of an arbitrary strongly regular operatorLP,U. In case of weak regularity, the Riesz basicity of two-dimensional subspaces is proved. In parallel with theLP,U operator, we consider the SturmLiouville operator Lq,U generated by the differential -y'' + q(x)y expressionwith distribution potential q of first-order singularity (i.e., we assume that the primitive u = q(1) belongs to L2[0, ]) and Birkhoff-regular boundary conditions. We reduce to this case -(1y')'+i(y)'+iy'+0y, operators of more general form where '1,,0(-1)L2and 10. For operator Lq,U, we get the same results on the asymptotics of eigenvalues, eigenfunctions, and basicity as for operator LP,U . Then, for the Dirac operator LP,U, we prove that the Riesz basis constant is uniform over the ballsPp,R for p1 or 0. The problem of conditional basicity is naturally generalized to the problem of equiconvergence of spectral decompositions in various metrics. We prove the result on equiconvergence by varying three indices: fL[0,] (decomposable function), PL[0,] (potential), and Sm-Sm00,m in L[0,] (equiconvergence of spectral decompositions in the corresponding norm). In conclusion, we prove theorems on conditional and unconditional basicity of the system of eigenfunctions and associated functions of operator LP,U in the spaces L[0,],2, and in various Besov spaces Bp,q[0,].

Publisher

Peoples' Friendship University of Russia

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3