Abstract
We consider a second-order nonlinear degenerate anisotropic parabolic equation in the case when the flux vector is only continuous and the nonnegative diffusion matrix is bounded and measurable. The concepts of entropy sub- and supersolution of the Cauchy problem are introduced, so that the entropy solution of this problem, understood in the sense of Chen-Perthame, is both an entropy sub- and supersolution. It is established that the maximum of entropy subsolutions of the Cauchy problem is also an entropy subsolution of this problem. This result is used to prove the existence of the largest entropy subsolution (and the smallest entropy supersolution). It is also shown that the largest entropy subsolution and the smallest entropy supersolution are also entropy solutions.
Publisher
Peoples' Friendship University of Russia
Reference16 articles.
1. Кружков С.Н. Квазилинейные уравнения первого порядка со многими независимыми переменными// Мат. сб.- 1970.- 81, № 2.-С. 228-255.
2. Кружков С.Н., Панов Е.Ю. Консервативные квазилинейные законы первого порядка с бесконечной областью зависимости от начальных данных// Докл. АН СССР. -1990.- 314, № 1.- С. 79-84.
3. Панов Е.Ю. К теории обобщенных энтропийных суб- и супер-решений задачи Коши для квазилинейного уравнения первого порядка// Дифф. уравн.- 2001.- 37, № 2.- С. 252-259.
4. Панов Е.Ю. О наибольших и наименьших обобщенных энтропийных решениях задачи Коши для квазилинейного уравнения первого порядка// Мат. сб. -2002.-193, № 5.-С. 95-112.
5. Панов Е.Ю. К теории обобщенных энтропийных решений задачи Коши для квазилинейного уравнения первого порядка в классе локально суммируемых функций// Изв. РАН. -2002.- 66, № 6.- С. 91-136.