Physiological features of cells and microvasculature under the local hypothermia influence

Author:

Guseynov Nijat A.ORCID,Ivashkevich Sergey G.ORCID,Boyko Evgeniy M.ORCID

Abstract

Hypothermia or cold therapy is the local or systemic application of cold for therapeutic purposes. Local application of cold is used to control inflammation: pain and swelling, hematoma and trismus reduction. Despite the frequent use of cooling in prosthodontic rehabilitation and in physical therapy, as evidenced by many reports in the literature, there is scientific documentation that suggests disadvantages of using this treatment in maxillofacial surgery and oral surgery. Also the clinical studies that have been carried out in maxillofacial surgery and oral surgery have been conducted in an empirical manner, which casts doubt on the results. In view of this, it is relevant to study the mechanisms of microcirculatory preconditioning and hypothermia. This physiological process is so interesting for the development of medical devices of controlled hardware hypothermia to prevent inflammatory symptoms at the stage of rehabilitation by targeting the vascular and cellular component of the inflammatory process in different areas of the human body. To date, the use of local hardware controlled hypothermia in various pathological conditions in humans is a topical trend in medicine. Microcirculatory bloodstream is directly related to temperature factors. Although there are concepts of vascular spasm or dilatation in the microcirculatory bloodstream during systemic hypothermia, there are no reliable data on the cellular and vascular reactions during local hypothermia. In this paper, a search for fundamental and current scientific work on the topic of cellular and vascular changes under the influence of hypothermia was conducted. The search for data revealed that the mechanisms of intracellular hypothermia are of particular interest for the development of therapeutic treatments after surgical interventions in areas with extensive blood supply. With this in mind, it is relevant to investigate several areas: the role of endothelium, glycocalyx and blood cells in microcirculatory-mediated preconditioning and intracellular hypothermia, and in the molecular mechanism that regulates these processes, whether they occur in the same way in all tissues.

Publisher

Peoples' Friendship University of Russia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3