Using an Additive Component Model to forecast the number of mergers and acquisitions in China

Author:

Reshetnikova Marina S.ORCID,Pavlov Maxim A.

Abstract

Research is devoted to the topic of modeling and forecasting seasonal fluctuations in MA transactions in China to assess the short-term outlook for the movement of this sector, as well as for future studies of MA market conditions in the PRC. As a forecasting method the authors have chosen a model with an additive component that considers quarterly data on the number of MA deals in the Celestial Empire for the past 15 quarters. The order of building a model with additive component is calculation of seasonal component values, deseasonalization of data, trend calculation and evaluation of forecast accuracy. Additive model allows smoothing seasonality by separating seasonal component from time series and separating it from trend and residual component. This action is performed by subtracting the seasonal component from the original time series. Thus, seasonality is removed from the time series, and only trend and residual component remain. After extraction of the seasonal component, it can be analyzed separately and used to predict future values of the time series. It is also possible to use smoothing methods, such as moving average or exponential smoothing, to smooth the seasonality and get a smoother trend. The authors also built trend models, namely linear, power, polynomial, exponential and logarithmic trend models and chose the polynomial model that provides the highest coefficient of determination. The resulting model has made it possible to forecast the number of transactions by quarter until the end of 2023, in the aftermath of which the possible reasons for the decline in the number of mergers and acquisitions in China are described.

Publisher

Peoples' Friendship University of Russia

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3