“Common Denominator” in Solving Multi-Factory Problems by Intelligent Systems

Author:

Adzhemov Artem S.ORCID,Denisova Alla B.ORCID

Abstract

The most important property, a distinctive feature of any intelligent system, is its decision-making ability. In this case, the more complex the problem to be solved, the more and more diverse the initial data, and the more critical it is that the decision to be made was comprehensively considered and evaluated. In many cases, simultaneously arriving various initial data, if considered separately, and decisions based on such consideration lead to completely different results, often contradicting each other. Therefore, in the process of development and implementation of artificial intelligence (AI), it is especially important to investigate the “mechanism” of decision-making in conditions of the inconsistency of incoming initial data and the need to establish some generalizing rule, according to which it is possible to find a harmonizing solution taking into account various influencing factors. It is evident that when establishing the rules of decision-making, it is necessary to strive for a “positive” result from the point of view of the problem being solved. This undoubtedly requires analyzing the consequences of the decision made in a set time scale, which can be provided by appropriate feedback that will allow us to make the necessary corrective actions. Artificial intelligence in modern forms of practical realization has, as a rule, a digital embodiment. It should be taken into account that the digital representation of data inevitably shows an inaccurate display of initial values when processes of a continuous nature are considered and analyzed. Since a digital model has certain limitations and characteristic properties when analyzing and processing initial data, it is logical to assume that for this reason, there can be some general approach, some general rule, according to which a decision is made in the conditions of diverse initial data and the need to take into account the relevant consequences after the decision is made. This paper attempts to find a decision-making mechanism, harmonizing it according to the incoming external and available internal input data.

Publisher

Peoples' Friendship University of Russia

Reference11 articles.

1. Timofeev AV. Essence and problems of artificial intelligence in the context of modern scientific and philosophical conceptions. Bulletin of Moscow Region State University. Series: Philosophical Sciences. 2020;(2):127-133. (In Russian). https://doi.org/10.18384/2310-7227-2020-2-127-133

2. Ioseliani AD, Tskhadadze NV. Artificial intelligence: socio-philosophical comprehension. Medicine. Sociology. Philosophy. Applied research. 2019;(2):196-202. (In Russian).

3. Zabezhailo MI, Borisov VV. On the interpretation of the concept of "artificial intelligence". Speech Technologies. 2022;(1):5-18. (In Russian).

4. Abramova AV. Ethics in the field of artificial intelligence - from discussion to scientific justification and practical application: an analytical report. Moscow: MGIMO-University; 2021. (In Russian).

5. Raykov AN. Subjectivity of explainable artificial intelligence. Russian Journal of Philosophical Sciences. 2022;65(1):72-90. (In Russian). https://doi.org/10.30727/0235-1188-2022-65-1-72-90

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3