Tradeoff of FPGA Design of a Floating-point Library for Arithmetic Operators

Author:

Mu`ñoz Daniel M.,Sanchez Diego F.,Llanos Carlos H.,Ayala-Rincón Mauricio

Abstract

Many scientific and engineering applications require to perform a large number of arithmetic operations that must be computed in an efficient manner using a high precision and a large dynamic range. Commonly, these applications are implemented on personal computers taking advantage of the floating-point arithmetic to perform the computations and high operational frequencies. However, most common software architectures execute the instructions in a sequential way due to the von Neumann model and, consequently, several delays are introduced in the data transfer between the program memory and the Arithmetic Logic Unit (ALU). There are several mobile applications which require to operate with a high performance in terms of accuracy of the computations and execution time as well as with low power consumption. Modern Field Programmable Gate Arrays (FPGAs) are a suitable solution for high performance embedded applications given the flexibility of their architectures and their parallel capabilities, which allows the implementation of complex algorithms and performance improvements. This paper describes a parameterizable floating-point library for arithmetic operators based on FPGAs. A general architecture was implemented for addition/subtraction and multiplication and two different architectures based on the Goldschmidt’s and the Newton-Raphson algorithms were implemented for division and square root. Additionally, a tradeoff analysis of the hardware implementation was performed, which enables the designer to choose, for general purpose applications, the suitable bit-width representation and error associated, as well as the area cost, elapsed time and power consumption for each arithmetic operator. Synthesis results have demonstrated the effectiveness of the implemented cores on commercial FPGAs and showed that the most critical parameter is the dedicated Digital Signal Processing (DSP) slices consumption. Simulation results were addressed to compute the mean square error (MSE) and maximum absolute error demonstrating the correctness of the implemented floating-point library and achieving and experimental error analysis. The Newton-Raphson algorithm achieves similar MSE results as the Goldschmidt’s algorithm, operating with similar frequencies; however, the first one saves more logic area and dedicated DSP blocks.

Publisher

Journal of Integrated Circuits and Systems

Subject

Electrical and Electronic Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of HDL and HLS for Accelerating Machine Learning based Strain Estimation with Ultrasonic Guided Waves;2023 XIII Brazilian Symposium on Computing Systems Engineering (SBESC);2023-11-21

2. Hardware Implementation of a GMDH Controller for Mobile Robot Obstacle Following/Avoidance;2023 Latin American Robotics Symposium (LARS), 2023 Brazilian Symposium on Robotics (SBR), and 2023 Workshop on Robotics in Education (WRE);2023-10-09

3. Data-Driven Real-Time Magnetic Tracking Applied to Myokinetic Interfaces;IEEE Transactions on Biomedical Circuits and Systems;2022-04

4. Swarm Intelligence-based Optimized Adaptive Filtering Technique for ECG Data Analysis System;IETE Journal of Research;2022-02-23

5. FPGA Design for On‐Board Measurement of Intermittency From In‐Situ Satellite Data;Earth and Space Science;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3