Abstract
Molecular Field-Coupled Nanocomputing (FCN) represents one of the most promising solutions to overcome the issues introduced by CMOS scaling. It encodes the information in the molecule charge distribution and propagates it through electrostatic intermolecular interaction. The need for charge transport is overcome, hugely reducing power dissipation.At the current state-of-the-art, the analysis of molecular FCN is mostly based on quantum mechanics techniques, or ab initio evaluated transcharacteristics. In all the cases, studies mainly consider the position of charges/atoms to be fixed. In a realistic situation, the position of atoms, thus the geometry, is subjected to molecular vibrations. In this work, we analyse the impact of molecular vibrations on the charge distribution of the 1,4-diallyl butane. We employ Ab Initio Molecular Dynamics to provide qualitative and quantitative results which describe the effects of temperature and electric fields on molecule charge distribution, taking into account the effects of molecular vibrations. The molecules are studied at near-absolute zero, cryogenic and ambient temperature conditions, showing promising results which proceed towards the assessment of the molecular FCN technology as a possible candidate for future low-power digital electronics. From a modelling perspective, the diallyl butane demonstrates good robustness against molecular vibrations, further confirming the possibility to use static transcharacteristics to analyse molecular circuits.
Publisher
Journal of Integrated Circuits and Systems
Subject
Electrical and Electronic Engineering
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献