Author:
Ashish Kumar Gupta,Amit Choudhari,Abhishek Kumar,Anamika Gupta
Abstract
Additive manufacturing, commonly known as 3D printing, is revolutionizing the field of biomedical engineering by enabling the creation of custom implants tailored to individual patient anatomy. This technology uses digital design files to layer-by-layer build structures from various materials, including biocompatible metals, polymers, and ceramics. In medical applications, this precision allows for the creation of implants that closely match the contours and geometries of a patient’s unique anatomical features, offering improved fit, functionality, and comfort compared to traditional, mass-produced implants. The potential benefits extend beyond just enhanced patient outcomes. With additive manufacturing, healthcare providers can reduce surgical times by designing implants that require minimal intraoperative modification. Moreover, the flexibility of this technology facilitates rapid prototyping and iterative design, enabling healthcare professionals to collaborate with engineers in refining implant designs before they are used in surgery. This iterative approach is particularly useful in complex cases, such as craniofacial reconstruction, where conventional implants may not adequately address the intricacies of a patient’s skeletal structure.
Publisher
Heighten Science Publications Corporation
Reference39 articles.
1. 1. Ghomi ER, Khosravi F, Neisiany RE, Singh S, Ramakrishna S. Future of additive manufacturing in healthcare. Current Opinion in Biomedical Engineering. 2021; 17:100255; doi.org/10.1016/j.cobme.2020.100255
2. 2. Choudhari A, Talkar S, Rayar P, Rane A. Design and manufacturing of compact and portable smart CNC machine. In: Vasudevan, H, Kottur, V, Raina, A (eds) Proceedings of International Conference on Intelligent Manufacturing and Automation Lecture Notes in Mechanical Engineering 2020: Springer; doi.org/101007/978-981-15-4485-9_21
3. 3. Griffiths L. CEIT Biomedical Engineering gets EU approval for 3D printed cranial implants [Internet]. TCTMAG. 18 November 2014. https://www.tctmagazine.com/additive-manufacturing-3d-printing-news/eu-approval-for-3d-printed-cranial-implants/.
4. 4. Ruban R, Rajashekhar VS, Nivedha B, Mohit H, Sanjay MR, Siengchin S. Role of additive manufacturing in biomedical engineering. Innovations in additive manufacturing: Springer. 2022; 139-57. doi.org/10.1007/978-3-030-89401-6_7
5. 5. Guzzi EA, Tibbitt MW. Additive Manufacturing of Precision Biomaterials. Adv Mater. 2020 Apr;32(13):e1901994. doi: 10.1002/adma.201901994. Epub 2019 Aug 18. PMID: 31423679.