Author:
Victor Abrukov,Weiqiang Pang,Darya Anufrieva
Abstract
The combustion properties of energetic materials have been extensively studied in the scientific literature. With the rapid advancement of data science and artificial intelligence techniques, predicting the performance of solid rocket propellants (SRPs) has become a key focus for researchers globally. Understanding and forecasting the characteristics of SRPs are crucial for analyzing and modeling combustion mechanisms, leading to the development of cutting-edge energetic materials. This study presents a methodology utilizing artificial neural networks (ANN) to create multifactor computational models (MCM) for predicting the burning rate of solid propellants. These models, based on existing burning rate data, can solve direct and inverse tasks, as well as conduct virtual experiments. The objective functions of the models focus on burning rate (direct tasks) and pressure (inverse tasks). This research lays the foundation for developing generalized combustion models to forecast the effects of various catalysts on a range of SRPs. Furthermore, this work represents a new direction in combustion science, contributing to the creation of a High-Energetic Materials Genome that accelerates the development of advanced propellants.
Publisher
Heighten Science Publications Corporation
Reference28 articles.
1. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions;Yan;Progress in Energy and Combustion Sci,2016
2. 2. Pang W, Li Y, DeLuca LT, Liang D, Qin Z, Liu X, Xu H, Fan X. Effect of Metal Nanopowders on the Performance of Solid Rocket Propellants: A Review. Nanomaterials (Basel). 2021 Oct 17;11(10):2749. doi: 10.3390/nano11102749. PMID: 34685188; PMCID: PMC8537742.
3. 3. Klinger D, Casey A, Manship T, Son S, Strachan A. Prediction of Solid Propellant Burning Rate Characteristics Using Machine Learning Techniques. Propellants, Explosives, Pyrotechnics. 2023; 48(4): e202200267.
4. 4. Kalil T, Wadia C. Materials Genome Initiative for Global Competitiveness, A whitepaper, Executive office of the president National Science and Technology Council, Washington, D.C. 20502, June 24, 2011.
5. 5. Wang Y, Liu Y, Song S, Yang Z, Qi X, Wang K, Liu Y, Zhang Q, Tian Y. Accelerating the discovery of insensitive high-energy-density materials by a materials genome approach. Nat Commun. 2018 Jun 22;9(1):2444. doi: 10.1038/s41467-018-04897-z. PMID: 29934564; PMCID: PMC6015015.