Detecting Pneumothorax on Chest Radiograph Using Segmentation with Deep Learning

Author:

Joshua Friedman,Peter Brotchie

Abstract

Introduction: Pneumothorax is a life-threatening condition that requires prompt recognition and therapy to prevent deterioration. Radiologist workload often precludes rapid assessment of the usual diagnostic modality, the chest radiograph, particularly after hours. The aim was to develop a deep learning model using a segmentation-based Deep Convolutional Neural Network (DCNN) to detect pneumothorax on chest radiographs to provide rapid and accurate pneumothorax diagnosis. Methods: This is a retrospective study of spontaneous pneumothorax at a single center, containing 130 positive and 70 negative radiographs. Subsequent manual contour mapping was performed to draw a mask of the pneumothorax. These image pairs were used to train a DCNN model (a modified AlexNet) after pretraining on the ImageNet dataset. Results: The DCNN achieved an accuracy of 0.83, with sensitivity of 98.1%, and specificity of 68.5%. Conclusion: This segmentation-based DCNN accuracy is comparable to previous categorization-based CDNN models, despite using a smaller sample size for training, while including the benefits of visual representation for clinician feedback. Segmentation-based DCNNs show promise in the development of accurate and clinically useful models for medical imaging.

Publisher

Heighten Science Publications Corporation

Reference44 articles.

1. 1. RW, Light. Pleural Diseases, 6th ed. Philadelphia: Lippincott, Williams, and Wilkins. 2013; 524. Available from: https://books.google.co.in/books/about/Pleural_Diseases.html?id=yyhhma5YZykC&redir_esc=y

2. 2. Thomsen L, Natho O, Feigen U, Schulz U, Kivelitz D. Value of digital radiography in expiration in detection of pneumothorax. Rofo. 2014 Mar;186(3):267-73. Available from: https://pubmed.ncbi.nlm.nih.gov/24043613/

3. 3. Kollef MH. Risk factors for the misdiagnosis of pneumothorax in the intensive care unit. Crit Care Med. 1991 Jul;19(7):906-10. Available from: https://pubmed.ncbi.nlm.nih.gov/2055079/

4. 4. Howard P, Martin Q. AI applications in emergency radiology. Emerg Radiol. 2022;30(8):678-689.

5. 5. Doe J, Smith A. Advances in pneumothorax detection using deep learning. J Med Imaging. 2022;45(3):123-134.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3