Corrosion Behavior of Active-Screen Plasma Nitrided 17-4 PH (H1150D) Steel in H2S/CO2-Containing Environments

Author:

Della Roverys Coseglio Mario Sergio1,Li Xiaoying1,Dong Hanshan1,Connolly Brian J.2,Dent Phil3,Fowler Chris3

Affiliation:

1. University of Birmingham, B15 2TT Edgbaston, Birmingham, U.K.

2. Corrosion and Protection Centre, University of Manchester, Manchester, U.K.

3. Element Materials Technology.

Abstract

The presence of hydrogen sulfide (H2S) in typical oilfield environments promotes hydrogen absorption and subsequent failure of high-strength steels by sulfide stress cracking (SSC). Plasma nitriding is as a potential method to increase the resistance of the 17-4 PH to SSC, although further investigation is required to evaluate the corrosion resistance of the modified layer when it is exposed to H2S-containing environments. The aim of this study was therefore to evaluate the corrosion resistance of the 17-4 PH in typical oilfield environment. Samples were plasma nitrided at low (420°C) and high (500°C) temperatures and immersed in produced water with mixed H2S and CO2. The electrochemical data and scanning electron microscopy (SEM) micrographs showed that there were no detrimental effects on the corrosion resistance when plasma nitriding was performed at low temperature (420°C), whereas the integrity of the modified layer was compromised when an elevated temperature (500°C) was applied. The enhanced resistance to localized corrosion of the nitride case obtained after the low-temperature surface modification was attributed to the formation of a compound layer of mixed M4N/M2-3N, the inner section being more corrosion resistant than the outer part, as revealed by SEM micrographs.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3