Studies on the Influence of Sodium Hydroxide Concentration on the Stress Corrosion Cracking Behavior of Modified 9Cr-1Mo (P91) Steel Weldment

Author:

Toppo Anita1,Sivai Bharasi N.2,Das C.R.3,George R.P.2

Affiliation:

1. Incubation Centre-IGCAR, Safety, Quality and Resource Management Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, India.

2. Corrosion Science and Technology Division, Metallurgy and Materials Group, Kalpakkam 603 102, India.

3. Materials Developing and Technology Division, Homi Bhabha National Institute, Kalpakkam 603 102, India.

Abstract

Influence of sodium hydroxide (NaOH) concentration on the behavior of modified 9Cr-1Mo (P91) steel weldment with respect to stress corrosion cracking (SCC) resistance was studied in this work. Weldment of this steel was prepared using a shielded metal arc welding process using modified 9Cr-1Mo electrode followed by weld heat treatment at 1,033 K/1 h. Stress corrosion cracking experiments were performed at 473 K at a strain rate of 1 × 10−6 s−1 in millipore water (MP) (inert medium) as well as in 1 M, 2 M, 3 M, and 4 M NaOH medium. Ultimate tensile strength (UTS), yield strength (YS), and % total elongation (%TE) determined from stress-strain plots were found to decrease with increasing concentration of NaOH. The SCC susceptibility index (Iscc) evaluated using UTS and %TE was highest for the specimen tested in 4 M NaOH. The number density of cracks determined by optical microscopy increased with the concentration of NaOH. Also, it was higher in number in the base metal than in the weld metal. However, at highest concentration of 4 M NaOH, cracks were observed in the heat affected zone of the weld metal. Fractographic studies by scanning electron microscopic showed mixed mode from intergranular to transgranular cracking and vice versa at all concentrations of NaOH. Failure in the base metal was attributed to coarse precipitates, facilitating easy pitting at the precipitate/matrix interface. From the studies it was inferred that weld metal showed better resistance than base metal to SCC in 1 M to 4 M NaOH concentrations.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3