Effects of Magnetic Field on Uneven Dissolution of Iron in Sulfuric Acid Solution with Chlorides

Author:

Li Hongjuan12,Ning Fei12,Dong Haiying12,Zhang Kun12,Lu Zhanpeng12,Tang Yuanjie12,Cai Shuangwei12,Cui Tongming12,Ma Jiarong12,Xu Xinhe12,Ling Sichun12

Affiliation:

1. Institute of Materials, School of Materials Science and Engineering, Shanghai University, 149 Yanchang Road P.O. Box.269, Shanghai 200072, China.

2. State Key Laboratory of Advanced Special Steel, Shanghai University, 381 Nancheng Road, Shanghai 200444, China.

Abstract

The effects of magnetic field on anodic dissolution and passivation of iron in a sulfuric acid solution with chlorides are investigated by electrochemical measurements and surface observations. In the anodic potentiodynamic polarization curve, the potential for the drastic current drop is not significantly affected by the potential sweep rate under 0 T, which moves in the negative direction with increasing potential sweep rate under 0.4 T magnetic field that is parallel to the working electrode surface. The uneven surface produced during the potentiodynamic polarization hinders the transition from active dissolution to passivation. The area fraction of the locally accelerated dissolution increases with prolonging polarization time at high potentials where the surface film precipitation-dissolution process is the rate-determining step for metal dissolution. Pretreatment under potentiostatic polarization at 0.4 T magnetic field produces an uneven surface that would result in unrecoverable electrochemical states after switching from 0.4 T to 0 T, depending on the applied potential. The positive-feedback mechanism for the magnetic field effect and the surface morphological effect is proposed. The results demonstrate the direct magnetohydrodynamic effect and its resultant uneven surface on the anodic behavior of iron.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3