Effect of Hydrogen on Creep Properties of SUS304 Austenitic Stainless Steel

Author:

Takazaki Daisuke12,Tsuchiyama Toshihiro13,Komoda Ryosuke14,Dadfarnia Mohsen15,Somerday Brian P.167,Sofronis Petros17,Kubota Masanobu1

Affiliation:

1. International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan.

2. Graduate School of Engineering, Kyushu University, Fukuoka 819-0395, Japan.

3. Department of Materials Science and Engineering, Kyushu University, Fukuoka 819-0395, Japan.

4. Department of Mechanical Engineering, Fukuoka University, Fukuoka 814-0180, Japan.

5. Department of Mechanical Engineering, Seattle University, Seattle, Washington 98122.

6. Somerday Consulting LLC, Wayne, Pennsylvania.

7. Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801.

Abstract

The objective of this study is to derive mechanistic insight into the degradation of metals in high-temperature hydrogen in order to enable the safety of evolving hydrogen technologies that operate at elevated temperature. Creep testing was performed in argon and hydrogen gases under absolute pressure of 0.12 MPa at 873 K. The material was JIS SUS304 austenitic stainless steel. Results revealed that the creep life (time to failure) and creep ductility (strain to failure) of the SUS304 in hydrogen gas and in argon displayed opposite trends. While the creep life (time to failure) of the SUS304 in hydrogen gas was significantly shorter than that in argon, creep ductility (strain to failure) was higher in hydrogen. Associated with the relatively higher creep ductility, evidence of transgranular microvoid coalescence was more prevalent on fracture surfaces produced in hydrogen compared to those produced in argon. In addition, analysis of the steady-state creep relationships in hydrogen and argon indicated that the same creep mechanism operated in the two environments, which was deduced as dislocation creep. Regarding the mechanisms governing reduced creep life in hydrogen, the effects of decarburization, carbide formation, and the hydrogen-enhanced localized plasticity mechanism were investigated. It was confirmed that these effects were not responsible for the reduced creep life in hydrogen, at least within the creep life range of this study. Alternately, the plausible role of hydrogen was to enhance the vacancy density, which led to magnified lattice diffusion (self-diffusion) and associated dislocation climb. As a consequence, hydrogen accelerated the creep strain rate and shortened the creep life.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3