Study on the Electrochemical Behavior of Al-6Zn-0.02In-1Mg-0.03Ti Sacrificial Anodes for Long-Term Corrosion Protection in the Ocean

Author:

Yang Mingkun1,Liu Yan1,Shi Zeyao1,Lv Xiaodan1,Liu Bin12,Sun Luyi2

Affiliation:

1. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.

2. Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269.

Abstract

After 10 y of service in the ocean, the long-term performance of Al-6Zn-0.02In-1Mg-0.03Ti aluminum alloy sacrificial anodes for steel piles was characterized by mass loss in addition to optical and electron microscopy analysis. The electrochemical behavior was conducted by open-circuit potential with potentiodynamic and potentiostatic polarizations. The results showed that cathodic protection potential was in the range of −0.960 VCSE to −1.103 VCSE. The corrosion type and consumption rate of the alloy anode were related to the output current. In harsh corrosion environments, the alloy anode showed uniform corrosion and lost more mass due to voltage output, therefore more current is needed to fulfill cathodic protection. Otherwise, localized corrosion and less mass loss were observed. The alloy anodes were covered by marine creatures and corrosion product. The corrosion product contained amorphous Al(OH)3 and MgAl2(CO3)(OH)·xH2O which became more crystalline from outside to inside of the alloy anode. A translucent corrosion product was found on the alloy anode surface which contained amorphous Al(OH)3·xH2O with S, along with AlxCly(OH)z·mH2O. The electrochemical performance of the alloy anode was strongly reduced by the coverage of corrosion product. Consequently, the open-circuit potential of the alloy anode increased and the output current decreased. The effect of corrosion product thicknesses on the anodic activation is not remarkable.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3