The Transition from Short- to Long-Term Marine Corrosion of Carbon Steels: 2. Parameterization and Modeling

Author:

Melchers Robert E.1,Jeffrey Robert1

Affiliation:

1. *Centre for Infrastructure Performance and Reliability, The University of Newcastle, Callaghan 2308, New South Wales, Australia.

Abstract

Previously, it was suggested that in the bi-modal model for corrosion loss as a function of exposure period the instantaneous corrosion rate increases by a factor of about 4 through the transition phase from mode 1 to mode 2. Recent experimental observations (from Part 1 [Melchers and Jeffrey, Corrosion 78, 5 (2022): p. 415]) and other experimental observations covering a range of corrosion influencing parameters closely support this value. The reason for it is examined through a model of the development of corrosion through the transition zone, based on interpretations of the data presented in Part 1. It is shown that pitting plays a crucial role in lowering local pH conditions and permitting transitioning of the corrosion process from oxygen reduction (in mode 1) to hydrogen evolution (in mode 2) as the thermodynamically possible cathodic reaction. In both cases, the rates of corrosion are controlled by diffusion considerations, not electrochemical kinetics. This also permits a theoretical basis for the observed ratio of around 4. Further, eventual long-term corrosion, usually observed as close to a linear trend in time, is proposed as representable a system in quasi-static equilibrium, involving both the hydrogen evolution reaction at the corrosion interface and loss of ferrous ions from the external face of the rust layers.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3