Optimization of the Cathodic Protection Design in Consideration of the Temperature Variation for Offshore Structures

Author:

Hong M.-S.1,Hwang J.-H.1,Kim J.H.1

Affiliation:

1. Hyundai Heavy Industries Co., Ltd., Material Research Department, Industrial Technology Institute, Ulsan, 1000 Bangeojinsunhwan-doro, Dong-gu, Republic of Korea.

Abstract

The temperature effect on the current density which closely related to cathodic protection (CP) design was examined using electrochemical tests. A case study of an optimized CP design for the floating production storage and offloading using a computational analysis tool was also performed. The electrochemical test results showed that the current density and the surface resistance of the specimen (EH36) at 28°C are lower and higher, respectively, compared with the 5°C condition; this phenomenon is the result of a calcareous deposit that was verified by scanning electron microscopy and energy dispersive x-ray spectroscopy surface analyses. The polarization curves which contained the effect of calcareous deposits according to the temperature were used as the computational analysis input data. The simulation results showed that the structure under the 5°C condition did not satisfy the CP criteria (−800 mVSCE to −1,050 mVSCE) at the bottom shell and the mooring chain. It had higher potential than −800 mVSCE. Although the structure at 28°C satisfied the protective potential range, it was sufficiently unstable for the prediction of the corrosion damage. To optimize and resolve the identified problems, the CP design was changed by CP methods, anodes quantities, and anodes distribution. Consequently, the structure at 5°C is sufficient for the satisfaction of the protective-potential criteria (< −800 mVSCE) at the bottom shell and the mooring chain. In the case of the structure at 28°C, a more-even potential distribution was achieved.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3