Rational Design of Effective Mg Degradation Modulators

Author:

Feiler C.1,Mei D.1,Luthringer-Feyerabend B.J.C.12,Lamaka S.V.1,Zheludkevich M.L.12

Affiliation:

1. Magnesium Innovation Centre - MagIC, Institute of Materials Research, Helmholtz-Zentrum Geesthacht, Geesthacht, Germany 21502.

2. Institute for Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany 24143.

Abstract

Prerequisite to unlock the full potential of Mg-based materials is to gain control of their degradation properties. Here a proof of concept is presented for an efficient and robust alternative to the data-driven machine learning approaches that are currently on the rise to facilitate the discovery of corrosion modulating agents. The electronic properties of bipyridine were tuned by its substitution with electron donating and electron withdrawing functional groups to regulate the degradation modulators interaction with different ions and the effect on the corrosion inhibition of pure Mg was predicted based on density functional theory calculations. Bipyridine and two of its derivatives were subsequently investigated experimentally to validate the trend predicted by the quantum chemical calculations.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3