Carbide Fragmentation and Dissolution in a High-Carbon High-Chromium Steel Using Hot Rolling Process: Microstructure Evolution, Wear, High-Temperature Oxidation, and Chloride-Induced Corrosion Properties

Author:

Shahsanaei Majid12,Pour-Ali Sadegh12,Kiani-Rashid Ali-Reza1,Virtanen Sannakaisa3

Affiliation:

1. Materials and Metallurgical Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, 91775-1111 Mashhad, Iran.

2. These authors contributed equally to this work.

3. Department of Materials Science, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany.

Abstract

A series of hot rolling processes with different reduction percentages (10%, 30%, and 50%) were applied to a high-carbon high-chromium tool steel (2HCTS). Microstructural evolutions, wear behavior, high-temperature oxidation, and aqueous corrosion properties were investigated. The results revealed the breakage and dissolution of primary carbides and a uniform carbide distribution after the hot rolling process. It was proposed that the presence of higher amounts of dissolved chromium in the hot rolled samples leads to the formation of Cr-rich oxides with more protection and less porosity at high temperatures, as well as an improved corrosion behavior in 3.5 wt% NaCl solution. This improvement in the corrosion behavior is not at the expense of the degradation of wear resistance. Probable mechanisms for carbides dissolution are also discussed.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3