Coupled Electro-Chemical-Soil Model to Evaluate the Influence of Soil Aeration on Underground Metal Pipe Corrosion

Author:

Azoor R.M.1,Deo R.N.1,Birbilis N.2,Kodikara J.K.1

Affiliation:

1. Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia.

2. Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia.

Abstract

A mechanistic understanding of the process of underground corrosion is important for modeling pipeline deterioration. In this study, a time-dependent multiscale numerical model incorporating electrochemistry and soil hydrology is developed. The model realistically simulates soil moisture and aeration conditions and their influence on anodic/cathodic activity without prior definition. In this manner, both micro- and macrocell corrosion and their evolution with time are simulated along with the effects of differential aeration. The model was validated with low-alloy cast iron corrosion data from the United States National Bureau of Standards corrosion exposure study. The effect of soil aeration in controlling soil corrosiveness was simulated with suitable boundary conditions. It was demonstrated that macrocells arising due to differential aeration can lead to elevated levels of corrosion in pipelines, especially in fairly aerated soils.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3