Effects of Phosphate on Pit Stabilization and Propagation in Copper in Synthetic Potable Waters

Author:

Ha Hung M.,Scully John R.

Abstract

Addition of less than 0.32 mM phosphate (10 mg/L as P) to synthetic potable waters delayed pit stabilization in copper by raising the pitting potential. Phosphate additions to synthetic drinking waters also repassivated propagating artificial copper pits but only at high phosphate concentrations such as 1.6 mM or 3.2 mM (50 mg/L or 100 mg/L as P). The inhibition efficacy of phosphate was a function of both phosphate concentration and preexisting artificial pit depth. Pit growth was easier to suppress when artificial pits were shallow (e.g., ~20 μm) compared to deep pits (e.g., ~250 μm). The inhibition effect of phosphate on copper pitting corrosion was reversible. Upon removal of phosphate from the bulk solution, pits grew at increasing rates. Two inhibition mechanisms capable of explaining the effect of phosphate on copper pitting are discussed.

Publisher

NACE International

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3